The Haagerup property for locally compact quantum groups
نویسندگان
چکیده
منابع مشابه
The Haagerup property for locally compact quantum groups
The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space ...
متن کاملThe Haagerup property, Property (T) and the Baum-Connes conjecture for locally compact Kac-Moody groups
We indicate which symmetrizable locally compact affine or hyperbolic Kac-Moody groups satisfy Kazhdan’s Property (T), and those that satisfy its strong negation, the Haagerup property. This reveals a new class of hyperbolic Kac-Moody groups satisfying the Haagerup property, namely symmetrizable locally compact Kac-Moody groups of rank 2 or of rank 3 noncompact hyperbolic type. These groups thus...
متن کاملfixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولReiter ’ s property ( P 1 ) for locally compact quantum groups
Let G be a locally compact group. Then G is known to be amenable if and only if it has Reiter’s property (P1), i.e., there is a net (mα)α of non-negative norm one functions in L(G) such that limα supx∈K ‖Lx−1mα−mα‖ = 0 for each compact subset K ⊂ G (Lx−1mα stands for the left translate of mα by x). We give a formulation of property (P1) that extends naturally to locally compact quantum groups i...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2016
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle-2013-0113